If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+3w-7744=0
a = 1; b = 3; c = -7744;
Δ = b2-4ac
Δ = 32-4·1·(-7744)
Δ = 30985
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{30985}}{2*1}=\frac{-3-\sqrt{30985}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{30985}}{2*1}=\frac{-3+\sqrt{30985}}{2} $
| 0.12(y-4)+0.02y=0.10y-0.5 | | 4(a-5)=8a-(4a=20 | | -7(-1+3a)=5(3-a) | | 3xx4x=12x^2 | | 65-5b=8 | | 3/4(4r-8)-1/4(8r-36)=13 | | .5x+12=23 | | 0=9x+-15 | | 4x+14|10+9(-11x+10)=15(-8x+4) | | 15+3x=4x+13 | | 1/2x+12=23 | | n÷22=9 | | 3/4z+5=-3/4z+17 | | 0=20t-15t^2 | | 176=x^2+3x | | 3/2z+17/6=3 | | 20+x=3(4x-2)+2x | | 4.9x^2+17x-300=0 | | 7=-6+x= | | 3/5(5u+10)=27 | | 6(4+y)=8(3-y)=10 | | −2x2+12x+16=0 | | 4+4v=2(-4v+8) | | p-22=-44 | | (3x+2)-2(x+4=)7 | | 3(1-4r)-3r=-12 | | 1/b=6 | | Y=3x+91 | | 12x-7=-6(-6x+5)+6 | | 2=c+9-16 | | 2.4(-0.7)=x | | y-24=-42 |